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Abstract

This paper proposes a novel hybrid forecasting model, which combines the group
method of data handling (GMDH) and the least squares support vector machine
(LSSVM), known as GLSSVM. The GMDH is used to determine the useful input vari-
ables for LSSVM model and the LSSVM model which works as time series forecasting.5

In this study the application of GLSSVM for monthly river flow forecasting of Selangor
and Bernam River are investigated. The results of the proposed GLSSVM approach
are compared with the conventional artificial neural network (ANN) models, Autoregres-
sive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the
long term observations of monthly river flow discharge. The standard statistical, the10

root mean square error (RMSE) and coefficient of correlation (R) are employed to eval-
uate the performance of various models developed. Experiment result indicates that
the hybrid model was powerful tools to model discharge time series and can be applied
successfully in complex hydrological modeling.

1 Introduction15

River flow forecasting is an essential procedure that is necessary for proper reser-
voir system controls and successful planning and management of water resources.
Accurate forecasting of river flow has been one of the most important issues in hy-
drological research. Due to river flow forecasting involves a rather complex nonlinear
and chaotic data pattern; several techniques have been proposed in the literature to20

improve the forecasting accuracy. The most comprehensive of all popular and widely
known statistical models which have been utilized in the last four decades for river flow
forecasting are autoregressive moving average (ARMA) models. The popularity of the
ARIMA model is due to its statistical properties as well as the well known Box-Jenkins
methodology. In the literature, extensive applications and reviews of ARIMA models25

proposed for modeling of water resources time series were reported (Yurekli et al.,
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2004; Muhamad and Hassan, 2005; Huang et al., 2004; Modarres, 2007; Fernandez
and Vega, 2009; Wang et al., 2009). However, the ARIMA model is only a class of
linear model and thus it can only capture linear feature of data time series. But many
water resources time series are often full of nonlinearity and chaotic.

More advanced nonlinear methods such as neural networks have been frequently5

applied in nonlinear time series modeling and chaotic time series modeling in recent
years (Karunasinghe and Liong, 2006, Rojas et al., 2008; Camastra and Colla, 1999,
Han and Wang, 2009, and Abraham and Nath, 2001). ANNs provide an attractive
alternative tool for forecasting researchers and have shown their nonlinear modeling
capability in data time series forecasting. In the field chaotic time series modeling, the10

most popular neural network model is the feed-forward neural network with the back
propagation (BP) algorithm (Ye, 2007). In the last decade, ANN have been widely
extensively to model many nonlinear hydrologic processes such as in river flow (Fi-
rat, 2008; Shrestha et al., 2005; Shamseldin et al., 2002; Dolling and Varas, 2003;
Muhamad and Hassan, 2005; Kisi, 2008; Wang et al., 2009, Keskin and Taylan, 2009),15

rainfall (Hung et al., 2009; de Vos and Rientjes, 2005) and ground water (Affandi and
Watanabe, 2007; Birkinshaw et al., 2008).

More advanced AI is support vector machine (SVM) is proposed by Vapnik and his
co-workers in 1995 through statistical learning theory. The SVM is a powerful method-
ology and has become a hot topic of intensive study due to its successful employed to20

solve most non-linear regression and time series problem and becoming increasingly
in the modeling and forecasting of hydrological and water resource processes. Several
studies have been carried out using SVM in hydrological modelling such as stream flow
forecasting (Wang et al., 2009, Asefa et al., 2006; Lin et al., 2006), rainfall runoff mod-
eling (Dibike et al.,2002) and flood stage forecasting (Liong and Sivapragasam, 2002;25

Yu et al., 2006). The standard SVM is solved using quadratic programming methods.
However, this method is often time consuming and has higher computational burden
because of the required constrained optimization programming.
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Least squares support vector machines (LSSVM), as a modification of SVM which
was introduced by Suykens (1999). The method uses equality constraints instead of
inequality constraints and adopts the least squares linear system as its loss function,
which is computationally attractive. LSSVM also has good convergence and high pre-
cision. Hence, this method is easier to use than quadratic programming solvers in SVM5

method. The major advantage of LS-SVM is that it is computationally very cheap while
it still possesses some important properties of the SVM. In the water resource, the
LSSVM method has received very little attention literature and only a few applications
of LSSVM to modeling of environmental and ecological systems such as water quality
prediction (Yunrong and Liangzhong, 2009).10

One sub-model of ANN is a group method of data handling (GMDH) algorithm was
first developed by Ivakhnenko (1971) as a multivariate analysis method for modeling
and identification of complex systems. The main idea of GMDH is to build an analytical
function in a feed-forward network based on a quadratic node transfer function whose
coefficients obtained by using a regression technique. This model has been success-15

fully used to deal with uncertainty, linear or nonlinearity of systems in a wide range
of disciplines such as engineering, science, economy, medical diagnostics, signal pro-
cessing and control systems (Tamura and Kondo, 1980; Ivakhnenko, 1995; Voss and
Feng, 2002). In the water resource, the GMDH method has received very little atten-
tion literature and only a few applications of GMDH to modeling of environmental and20

ecological systems (Chang and Hwang, 1999; Onwubolu et al., 2007; Wang et al.,
2005).

There have been several studies suggesting hybrid models, combining the ARIMA
and ANN model (Zhang, 2003; Jain and Kumar, 2006; Su et al., 1997; Wang et al.,
2005), the GMDH and ANN model (Wang et al., 2005), GMDH and differential evolution25

(Onwubolu, 2008), ARIMA and support vector machine (SVM) (Chen and Wang, 2007),
ANN and Fuzzy system (Yang et al., 2006). Their results showed that the hybrid model
can be an effective way to improving predictions achieved by either of the models used
separately.
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In this paper, a novel hybrid GMDH-type algorithm is proposed by integrating simple
GMDH with LSSVM to forecast river flow time series data. The hybrid model combines
GMDH and LSSVM into one methodology, known as GLSSVM. To verify the applica-
tion of this approach, the hybrid model was compared with ARIMA, ANN, GMDH and
LSSVM models using the monthly river flow of Selangor and Bernam rivers located in5

Selangor of Malaysia.

2 Individual forecasting models

This section presents the ARIMA, ANN, GMDH and LSSVM models used for modeling
time series. The reason for choosing these models in this study were because these
methods have been widely and successfully used in forecasting time series.10

2.1 The autoregressive integrated moving average model

The ARIMA models were introduced by Box and Jenkins (1970), have been one of the
most popular approaches to the analysis of the time series and prediction. The general
ARIMA models are compound of a seasonal and non-seasonal part are represented
by the following way:15

φp(B)ΦP (Bs)(1−B)d (1−Bs)Dxt =θq(B)ΘQ(Bs)at (1)

where φ(B)and θ(B) are polynomials of order p and q, respectively; Φ(Bs) and Θ(Bs)
are polynomials in Bs of degrees P and Q, respectively; p order of non-seasonal auto
regression; d number of regular differencing; q order of the non-seasonal moving aver-
age; P order of seasonal auto regression; D number of seasonal differencing; Q order20

of seasonal moving average; and s length of season. Random errors, atare assumed
to be independently and identically distributed with a mean of zero and a constant vari-
ance of σ2. The order of an ARIMA model is represented by ARIMA (p, d , q) and the
order of an SARIMA model is represented by ARIMA(p, d , q) × (P ,D,Q)s. The term (p,
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d , q) is the order of the non-seasonal part and (P ,D,Q)s is the order of the seasonal
part.

The Box-Jenkins methodology is basically divided into four steps: identification, esti-
mation, diagnostic checking and forecasting. In the identification step, transformation is
often needed to make time series stationary. The behavior of the autocorrelation (ACF)5

and partial autocorrelation function (PACF) is used to see whether the series is station-
ary or not, seasonal or non-seasonal. The next step is choosing a tentative model
by matching both ACF and PACF of the stationary series. Once a tentative model is
identified, the parameters of the model are estimated. The last step of model building
is the diagnostic checking of model adequacy, basically to check if the model assump-10

tions about the error, at are satisfied. Diagnostic checking using the ACF and PACF of
residuals was carried out, which can be referred to Brockwell and Davis (2002). If the
model is not adequate, a new tentative model should be identified followed by the steps
of parameter estimation and model verification. The process is repeated several times
until a satisfactory model is finally selected. The forecasting model was then used to15

compute the fitted values and forecasts values.
The Akaike’s Information Criterion (AIC) is used to evaluate the goodness of fit with

smaller values indicating a better fitting and more parsimonious model than larger val-
ues (Akaike, 1974). Mathematical formulation of AIC is defined as

AIC= ln

(∑n
t=1e

2
t

n

)
+

2p
n

(2)20

where p the number of parameters and n the periods of data.

2.2 The artificial neural network model

The ANN are flexible computing has been extensively studied and used for time series
forecasting in many areas of science and engineering since early 1990. An ANN is
a mathematical model which has a highly connected structure similar to brain cells.25
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The model has the capability of a complex mapping between input and output that en-
ables the network to approximate nonlinear functions. Single hidden layer feed forward
network is the most widely used model form for time series modeling and forecasting
(Zhang et al., 1998). The model usually consists of three layers: the first layer is the
input layer where the data are introduced to the network, the second layer is the hidden5

layer where data are processed and the last layer is the output layer where the results
of given input are produced. The structure of a feed-forward ANN is shown in Fig. 1.

The output of the ANN assuming a linear output neuron j , a single hidden layer with
h sigmoid hidden nodes and an input variable (xt) is given by

xt =g

 h∑
j=1

wj f (sj )+bk

 (3)10

where g(·) is the linear transfer function of the output neuron k and bk is its bias, wj
is the connection weights between hidden layers and output units, f (·) is the transfer
function of the hidden layer (Coulibaly and Evora, 2007). The transfer functions can
take several forms and the most widely used transfer functions are

15

Log-sigmoid: f (si )= logsig(si )=
1

1+exp(−si )

Linear: f (si )=purelin(si )=si

Hyperbolic tangent sigmoid: f (si )= tansig(si )=
2

1+exp(−2si )
−120

where si =
∑n

i=1wixi is the input signal referred to as the weighted sum of incoming
information.

For a univariate time series forecasting problem, the inputs of the network are the
past lagged observations (xt−1,xt−2,..,xt−p) and the output is the predicted value (xt)25
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(Zhang et al., 2001). Hence the ANN of Eq. (2) can be written as

xt =g(xt−1, xt−2, ..., xt−p,w)+εt (4)

where w is a vector of all parameters and g(.) is a function determined by the network
structure and connection weights. Thus, in some senses, the ANN model is equivalent
to a nonlinear autoregressive (NAR) model.5

Several optimization algorithms can be used to train the ANN. Among the several
training algorithms available, back-propagation has been the most popular and most
widely used (Zou et al., 2007). In a back-propagation network, the weighted connec-
tions feed activations only in the forward direction from an input layer to the output
layer. Theses interconnections are adjusted using an error convergence technique so10

that the network’s response best matches are desire response.

2.3 The Least Square Support Vector Machines Model

The LSSVM is a new technique for regression. The LSSVM predictor is trained using a
set of time series historic values as inputs and a single output as the target value. In the
following, we briefly introduce LSSVM, which can be used for time series forecasting.15

Consider a given training set of n data points {xi ,yi}
n
i=1 with input data xi ∈Rn, pis

the total number of data patterns and outputyi ∈R. SVM approximate the function in
the following form

y(x)=wTφ(x)+b (5)

where φ(x)represents the high dimensional feature spaces, which is nonlinearly20

mapped from the input space x. In LSSVM for function estimation, the optimization
problem is formulated (Suykens et al., 2002):

minJw,e=
1
2
wTw+

Y
2

sumn
i=1ei

2 (6)
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Subject to the equality constraints

y(x)=wTφ(xi )+b+ei i =1, 2, ..., n

The solution is obtained after constructing the Lagrange
With Lagrange multipliers αi . The conditions for optimality are given by

∂L
∂w

=0→w =
N∑
i=1

αiφ(xi ),5

∂L
∂b

=0→
N∑
i=1

αi =0,

∂L
∂ei

=0→αi =γei ,

∂L
∂αi

=0→wTφ(xi )+b+ei −yi =0,

for i = 1, 2, ..., n. After elimination of ei and w the solution is given by the following set
of linear equations:10

where y = [y1; ...; yn], 1= [1; ...; 1], α = [α1; ...; αn]. According to Mercer’s condition,
the kernel function can be defined as

K (xi ,xj )=φ(xi )
Tφ(xj ), i , j =1, 2, ..., n (7)

This finally leads to the following LSSVM model for function estimation:

y(x)=
n∑

i=1

αiK (xi ,xj )+b (8)15

where αi , b are the solution to the linear system. Any function that satisfies Mercer’s
condition can be used as the kernel function. The choice of the kernel function K (.,.)

3699

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/3691/2010/hessd-7-3691-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/3691/2010/hessd-7-3691-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 3691–3731, 2010

A hybrid least
squares support

vector machines and
GMDH approach

R. Samsudin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

has several possibilities. K (xi ,xj ) is defined as the kernel function. The value of the
kernel is equal to the inner product of two vectors X i and Xj in the feature space
φ(xi )and φ(xj ), that is, K (xi ,xj )=φ(xi ) ∗φ(xj ). The structure of a SVM is shown in
Fig. 2.
The typical examples of the kernel function are as follows:5

Linear: K (xi ,xj )=xT
i xj

Sigmoid: K (xi ,xj )= tanh(γxT
i xj +r)

Polynomial: K (xi ,xj )= (γxT
i xj +r)d , γ > 0

Radial basis function (RBF) :K (xi ,xj )=exp(−γ
∥∥xi −xj

∥∥2
), γ > 0 (9)

Here γ,r and d are kernel parameters. The kernel parameters should be carefully10

chosen as they implicitly define the structure of the high dimensional feature space
φ(x)and thus control the complexity of the final solution.

2.4 The group method of data handling model

The algorithm of Group Method of Data Handling (GMDH) was introduced by
Ivakhnenko in early 1970 as a multivariate analysis method for modeling and identi-15

fication of complex systems. The GMDH method was originally formulated to solve
higher order regression polynomials specially for solving modeling and classification
problems. General connection between inputs and output variables can be expressed
by a complicated polynomial series in the form of the Volterra series, known as the
Kolmogorov-Gabor polynomial (Ivakhnenko, 1971):20

y =a0+
M∑
i=1

aixi+
M∑
i=1

M∑
j=1

ai jxixj+
M∑
i=1

M∑
j=1

M∑
k=1

ai jkxixjxk+ ... (10)

where x is the input to the system, M is the number of inputs and aare coefficients
or weights. However, for most application of the quadratic forms are called as partial
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descriptions (PD) where only two variables are used in the form

y =a0+a1xi +a2xj +a3xixj +a4x
2
i +a5x

2
j (11)

to predict the output. To obtain the value of the coefficients a for each m models, a
system of Gauss normal equation is solved. The coefficient ai of nodes in each layer
are expressed in the form of5

A= (XTX)−1XTY

where Y= [y1 y2...yM ]T , A= [a0,a1, a2,a3,a4,a5],

X=



1 x1p x1q x1px1q x2
1p x2

1q

1 x2p x2q x2px2q x2
2p x2

2q
· · · · · ·
· · · · · ·
· · · · · ·
1 xMp xMq xMpxMq x2

Mp x2
Mq


and M is the number of observations in the training set.
The main function of GMDH is based on the forward propagation of signal through10

nodes of the net similar to the principal used in classical neural nets. Every layer con-
sists of simple nodes each of which performs its own polynomial transfer function and
passes its output to nodes in the next layer. The basic steps involved in the conven-
tional GMDH modeling (Nariman-Zadeh et al., 2002) are as follows:

Step 1: Select normalized data X={x1,x2,...,xM} as input variables. Divide the avail-15

able data into training and testing data sets.
Step 2: Construct MC2 =M(M −1)/2 new variables, in the training data set and

construct the regression polynomial for first layer by forming the quadratic expression
which approximates the output y in Eq. (11).
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Step 3: Identify the contributing nodes at each hidden layer according to the value of
mean root square error (RMSE). Eliminate the least effective variable by replacing the
columns of X (old columns) with the new columns of Z.

Step 4: The GMDH algorithm is carried out by repeating steps 2 and 3 of the al-
gorithm. When the errors of the test data in each layer stop decreasing, the iterative5

computation is terminated.
The configuration of the conventional GMDH structure is shown in Fig. 3.

2.5 The hybrid model

In the proposed method, the combination of GMDH and LSSVM (GLSSVM) are ap-
plied to enhance the capability of hybrid model. As input variables are selected by the10

decision made by GMDH and LSSVM model is used as time series forecasting. The
hybrid model procedure is carried out in the following step:

Step 1: The normalized data are separated into the training and testing sets data.
Step 2: All combinations of two input variables (xi ,xj )are generated in each layer.

The number of input variables are MC2 =
M!

(M−2)!2! . Construct the regression polynomial15

for this layer by forming the quadratic expression which approximates the output y in
Eq. (11). The coefficient vector of the PD is determined by the least square estimation
approach.

Step 3: Determine new input variables for the next layer. The output x′ variable
which give the smallest of root mean square error (RMSE) for the train data set is20

combined with the input variables {x1,x2,...,xM ,x′} with M =M+1. The new input
{x1,x2,...,xM ,x′} of the neurons in the hidden layers are use as input for the LSSVM
model.

Step 4: The GLSSVM algorithm is carried out by repeating steps 2 to 4 until k = 5
iteration. The GLSSVM model with the minimum value of the RMSE is selected as the25

output model. The configuration of the GLSSVM structure is shown in Fig. 4.
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3 Case study

In this study, monthly flow data from Selangor River and Bernam River in Selangor,
Malaysia are selected as a study site. The location of the Selangor and Bernam rivers
are shown in Fig. 5. The Bernam River located between the Malaysian states of Perak
and Selangor, demarcating the border of the two states. The Selangor River is a major5

river in Selangor, Malaysia. It runs from Kuala Kubu Bharu in the east and empties into
the Straits of Malacca at Kuala Selangor in the west.

The catchment area at Selangor site (3.24◦, 101.26◦) is 1450 km2 and the mean
elevation is 8 m. Meanwhile the catchment area at Bernam site (3.48◦, 101.21◦) is
1090 km2 with the mean elevation is 19 m. Both rivers basin have quite significant effect10

on drinking water supply, irrigation and aquaculture activities such as the cultivation of
fresh water fishes for human consumption.

The observed data are within 47 years (564 months) long with an observation period
between January 1962 and December 2008 for Selangor River and 43 years (516
months) from January 1966 to December 2008 for Bernam River. The training dataset15

of 504 monthly records (January 1962 to December 2004) for Selangor River and 456
monthly records (January 1966 to December 2004) were used to train the network to
obtain parameters model. Another dataset consisting of 60 monthly (January 2005 to
December 2008) records was used as testing dataset for both stations (Fig. 6).

Before starting the training, the collected data were normalized within the range 0 to20

1 using the following formula

xt =0.1+
yt

1.2max(yt)

where xt is the normalized value, yt is the actual value and max(yt) is the maximum
value in the collected data.

The performances of each model for both training and forecasting data are evaluated25

according to the root-mean-square error (RMSE) and correlation coefficient (R) which
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are widely used for evaluating results of time series forecasting. RMSE and MAE are
the commonly used error index statistics. The RMSE and R are defined as

RMSE=

√√√√ 1
N

N∑
t=1

(yi −oi )2

R =
1
n

∑n
i=1 (yi − ȳ)(oi − ō)√

1
n

∑n
i=1 (yi − ȳ)2

√
1
n

∑n
i=1 (oi − ō)

where oi and yi are the observed and forecasted values at data point i , respectively,5

ō is the mean of the observed values, and N is the number of data points. The cri-
teria to judge the best model are relatively small of RMSE in the training and testing.
Correlation coefficient measures how well the flows predicted correlate with the flows
observed. Clearly, the R value close to unity indicates a satisfactory result, while a low
value or close to zero implies an inadequate result.10

4 Result and discussion

4.1 Fitting the ARIMA models to the data

The sample autocorrelation function (ACF) and sample partial autocorrelation function
(PACF) for Selangor River and Bernam River series are plotted in Figs. 7 and 8, respec-
tively. The ACFs curve for monthly flow data of two study sites decayed with mixture15

of sine wave pattern and exponential curve that reflects the random periodicity of the
data and indicates the need for seasonal MA terms in the model. For PACF, there were
significant lag at spikes from lag 1 to 5, which suggest an AR process. In the PACF
there were significant spikes present near lag 12 and 24. Therefore the series need for
seasonal AR process. The identification of best model for river flow series based on20
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minimum AIC is shown in Table 1. The criteria to judge the best model based on AIC
show that ARIMA(1,0,0)×(1,0,1)12 was selected as the best model for Selangor River
where the ARIMA (2,0,0)×(2,0,2)12 were relatively best model for Bernam River.

Since the ARIMA (1,0,0)×(1,0,1)12 was the best model for Selangor River and
ARIMA (2,0,0)×(2,0,2)12 for Bernam River, then the model was used to identify the5

input structures. The ARIMA (2,0,0)×(2,0,2)12 model can be written as

(1−0.3515B−0.1351B2)(1−0.7014B12−0.2933B24)xt = (1−0.5802B12−0.3720B24)

atxt =0.3515xt−1+0.1351xt−2+0.7014xt−12−0.2465xt−13−0.0948xt−14

+0.2933xt−24

−0.1031xt−25−0.0396xt−26−0.5802at−12−0.3720at−24+at10

and the ARIMA (1,0,0)x(1,0,1)12 model can be written as

(1−0.4013B)(1−0.9956B12)xt = (1−0.9460B)at

xt =0.4013xt−1+0.9956xt−12−0.3995xt−13−0.9460at−12+at

the above equation for Selangor River can be rewritten as

xt = f (xt−1,xt−12,xt−13,at−12) (12)15

and for Bernam River as

xt = f (xt−1,xt−2,xt−12,xt−13,xt−14,xt−24,xt−25,xt−26,at−12,at−24) (13)

4.2 Fitting ANN to the data

One of the most important steps in developing a satisfactory forecasting model such
as ANN and LSSVM models is the selection of the input variables. In this study, the six20

input structures which have various input variables were trained and tested by LSSVM
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and ANN. Four approaches were used to identify the input structures, the first three
inputs were accomplished by setting the input layer nodes equal to the number of the
lagged variables from river flow data, xt−1, xt−2,. . . , xt−p where p is the time delay. The
time delay was taken 2, 6 and 12 months. The second, third and forth approaches were
identified using correlation analysis, stepwise regression analysis and ARIMA model,5

respectively. The input structures of forecasting models are shown in Tables 2 and 3.
In this study, a typical three-layer feed-forward ANN model was constructed for fore-

casting monthly river flow time series. The training and testing data were normalized
in the range zero to one. From the input layer to the hidden layer, the hyperbolic tan-
gent sigmoid transfer function that has been commonly used in hydrology was applied.10

From the hidden layer to the output layer, a linear function was employed as the trans-
fer function because the linear function is known to be robust for a continuous output
variable.

The network was trained for 5000 epochs using the conjugate gradient descent back-
propagation algorithm with a learning rate of 0.001 and a momentum coefficient of 0.9.15

The six models (M1-M6) having various input structures were trained and tested by
ANN models and the optimal number of neuron in the hidden layer was identified using
several practical guidelines. These include using I/2 (Kang, 1991), 2I (Wong, 1991)
and 2I+1 (Lipmann, 1987), where I is the number of input. The effect of changing
the number of hidden neurons on the RMSE, MAE and R of the data set is shown in20

Table 4.
Table 4 shows the performance of ANN varying with the number of neurons in the

hidden layer.
For Selangor River, in the training phase, the M3 model with the number of hidden

neurons 2I+1 obtained the best RMSE, MAE and R statistics of 0.098, 0.07 and 0.66,25

respectively. While in testing phase, the M6 model with 2I + 1 numbers of hidden neu-
rons is the best RMSE, MAE and R statistics of 0.112, 0.079 and 0.594, respectively.

For the Bernam River, in the training phase, the M6 model with the number of hidden
neurons are I/2 obtained the best RMSE, MAE and R statistics of 0.0608, 0.0474, and
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0.9137, respectively. While in testing phase, the M6 model with I/2 numbers of hidden
neurons was the smallest RMSE and MAE of 0.0714 and 0.0506, respectively; while
the M6 model with 2I numbers of hidden neurons obtained the highest of R statistics
of 0.8479.

Hence, according to their performances indices, ANN (4,9,1) was selected for appro-5

priate ANN model in Selangor River whereas ANN (10,5,1) was selected for appropri-
ate ANN model in Bernam River.

4.3 Fitting LSSVM to the data

There is no theory that can use to guide the selection the optimal number of input
nodes of the LSSVM model. In the training and testing of LSSVM model, the same10

input structures of the data set (M1–M6) were used. The precision and convergence
of LSSVM were also affected by (γ, σ2). There is no structured way to choose the
optimal parameters of LSSVM. In order to obtain the optimal model parameters of
the LSSVM, a grid search algorithm was employed in the parameter space. Cross-
validation is a popular technique for estimating generalization performance. To get15

good generalization ability, we conducted a validation process to decide parameters.
In order to better evaluate the performance of the proposed approach, we considered
a grid search of (γ,σ2) with γ in the range 10 to 1000 and σ2 in the range 0.01 to 1.0.
For each hyperparameter pair (γ,σ2) in the search space, 5-fold cross validation on the
training set was performed to predict the prediction error. The best fit model structure20

for each model was determined according to criteria of performance evaluation. In
the study, the LSSVM model was implemented with software package LS-SVMlab1.5
(Pelckmans et al., 2003) using MATLAB. The LSSVM method was employed, so a
kernel function had to be selected from the qualified function. Many works on the
use LSSVM in time series modeling and forecasting have demonstrated the favorable25

performance of the RBF (Liu and Wang, 2008, Yu et al., 2006; Gencoglu and Ulyar,
2009). Therefore, the RBF, which has a parameter γ as in Eq. (8), was adopted in this
work. Table 5 shows the performance results obtained in the training and testing period

3707

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/3691/2010/hessd-7-3691-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/3691/2010/hessd-7-3691-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 3691–3731, 2010

A hybrid least
squares support

vector machines and
GMDH approach

R. Samsudin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of the LSSVM approach.
As can be seen from Table 5, the LSSVM models were evaluated based on their

performance in the training and testing sets. For Selangor River, in the training phase,
the best value of the RMSE and R statistics 0.09 and 0.69 (in M6), respectively. While
in testing phase, the lowest value of the RMSE was 0.106 (in M3) and the highest value5

of the R was 0.63 (in M5).

4.4 Fitting GMDH and GLSSVM to the data

In designing the GMDH and GLSSVM model, one must determine the following vari-
ables: the number of input nodes and the number of layers. The selection of the
number of input corresponds to the number of variables play important roles for many10

successful applications of GMDH.
GMDH works by building successive layers with complex connections that were cre-

ated by using second-order polynomial function. The first layer created was made by
computing regressions of the input variables. The second layer was created was com-
puting regressions of the output value. Only the best was chosen at each layer and this15

process continued until a pre-specified selection criterion was found.
The proposed hybrid learning architecture was composed of two stages. In the first

stage, GMDH was used to determine the useful inputs for LSSVM method. The es-
timated output values x′ was used as the feedback value and it was combined with
the input variables {x1,x2,...,xM} in the next loop calculations. The second stage the20

LSSVM mapping the combination inputs variables {x1,x2,...,xM ,x′} to seek optimal
solutions for determining the best output for forecasting.

To make the GMDH and GLSSVM models simple and reduce some computational
burden, only six levels of input nodes (M1–M6) and five hidden layers (k) from 1 to 5
were selected for experiment.25

In LSSVM model, parameter values for γ and σ2 needed to be first specified. The
LSSVM parameters were selected by grid searching with γin the range 10 to 1000 and
σ2 in the range 0.01 to 1.0. For each parameter pair(γ,σ2) in the search space, 5-fold
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cross validation on the training set was performed to predict the prediction error. The
performances of GMDH and GLSSVM for time series forecasting models are given in
Table 5.

For the GMDH model, in the training phase, the best value of the RMSE and R
statistics was 0.096 and 0.68 (in M5), respectively. Analyzing the result during testing,5

the best value of the RMSE and R statistics was 0.103 and 0.59 (in M3), respectively.
In the training phase, GLSSVM model obtained the best RMSE and R statistics of

0.069 and 0.844 (in M2), respectively. While in testing phase, the lowest value of the
RMSE was 0.101 (in M3) and the highest value of the R was 0.64 (in M5).

For Bernam River, in the training and testing phase, the best value of RMSE, MAE10

and R for LSSM, GMDH and GLSSVM models were obtained using M6.
The model that performed best in testing was chosen as final model for forecasting

of sixty monthly flows. As can seen from Table 5, for Selangor River, the model input
M5 gave the best performance for LSSVM and GLSSVM models, and M3 for GMDH
model. While for Bernam River, the model input M6 gave the best performance for15

LSSVM, GMDH and GLSSVM models and hence, these model inputs were chosen as
the final model.

4.5 Comparisons of forecasting models

For further analysis, the error statistics of the optimum ARIMA, ANN, GMDH, LSSVM
and GLSSVM were compared. The performances of all methods for training and testing20

data set are given in Table 6.
Comparing performances of ARIMA, ANN, GMDH, LSSVM and GLSSVM models,

for Selangor and Bernam rivers in training, the lowest RMSE and the largest R were
calculated for GLSSVM model, respectively. For testing data, the best value of MAE
and R were found for GLSSVM model. However, the lowest RMSE were observed for25

GMDH model for Selangor River and LSSVM model for Bernam River. From the Table
6, it is evident that the GLSSVM performed better than the ARIMA, ANN, GMDH and
LSSVM models in training and testing process.
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Figures 9 and 10 show the comparison of time series and scatter plots between
modeled results by the five models and actual data for the last sixty months during
testing stage for Selangor and Bernam rivers, respectively. All five models gave close
approximations of the actual observations, suggesting that these approaches are ap-
plicable for modeling river flow time series data. However, the tested line generated5

from GLSSVM is much closer to the actual value line than tested line generated from
other models. Similar to R and fit line equation coefficients, the GLSSVM is slightly su-
perior to the other models. The results obtained in this study indicate that the GLSSVM
model is powerful tools to model the river flow time series and can give good prediction
performance than ARIMA, ANN, GMDH and LSSVM time series approaches. The re-10

sults indicate that the best performance can be obtained by GLSSVM model followed
by LSSVM, GMDH, ANN and ARIMA models.

5 Conclusions

Monthly river flow estimation is vital in hydrological practices. There are plenty of
methods used to predict river flows. In this paper, we have demonstrated how the15

monthly river flow could be well represented by the hybrid models, combining the
GMDH and LSSVM models. To illustrate the capability of the LSSVM model, Selangor
River and Bernam River, located in Selangor, Malaysia was chosen as a case study.
The river flow forecasting models having various input structures were trained and
tested to investigate the applicability of GLSSVM compared with ARIMA, ANN, GMDH20

and LSSVM models. One of the most important in developing a satisfactory forecasting
model such as ANN, GMDH and LSSVM models is the selection of the input variables.
Empirical results on the two data sets using five different models clearly reveal the
efficiency of the hybrid model. In terms of RMSE and R values, for both data sets,
hybrid model has the best in training. In testing, high correlation coefficient (R) was25

achieved by using the hybrid model for both data sets. However, the lowest value of
RMSE were achieved using the GMDH for Selangor River and LSSVM for Bernam
River. These results show that the hybrid model provides a robust modeling capable of
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capturing the nonlinear nature of the complex river flow time series and thus producing
more accurate forecasts.
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Table 1. Comparison of ARIMA models’ Statistical Results for Selangor and Bernam Rivers.

Selangor River Bernam River

ARIMA Model AIC ARIMA Model AIC

(1,0,0)×(1,0,1)12 −4.765 (1,0,0)×(1,0,1)12 −4.458
(1,0,0)×(3,0,0)12 −4.620 (5,0,0)×(2,0,2)12 −4.251
(1,0,0)×(1,0,0)12 −4.514 (3,0,0)×(2,0,1)12 −4.459
(1,0,1)×(3,0,0)12 −4.614 (2,0,0)×(1,0,1)12 −4.466
(1,0,1)×(1,0,1)12 −4.757 (2,0,0)×(2,0,2)12 −4.467
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Table 2. The Input Structure of the Models for Forecasting of Selangor River.

Model Input Structure

M1 xt = f (xt−1,xt−2)

M2 xt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6)

M3 xt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8,xt−9,xt−10,xt−11,xt−12)

M4 xt = f (xt−1,xt−2,xt−4,xt−5,xt−6,xt−7,xt−8,xt−10,xt−11,xt−12)

M5 xt = f (xt−1,xt−2,xt−4,xt−5,xt−7,xt−10,xt−12)

M6 xt = f (xt−1,xt−2,xt−12,xt−13,xt−14,xt−24,xt−25,xt−26,at−12,at−24)
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Table 3. The Input Structure of the Models for Forecasting of Bernam River.

Model Input Structure

M1 xt = f (xt−1,xt−2)

M2 xt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6)

M3 xt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8,xt−9,xt−10,xt−11,xt−12)

M4 xt = f (xt−1,xt−2,,xt−4,xt−5,xt−6,xt−7,xt−8,xt−10,xt−11,xt−12)

M5 xt = f (xt−1,xt−2,xt−4,xt−5,xt−7,xt−10,xt−12)

M6 xt = f (xt−1,xt−2,xt−12,xt−13,xt−14,xt−24,xt−25,xt−26,at−12,at−24)
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Table 4. Comparison of ANN structures for Selangor and Bernam River.

Selangor River Bernam River

Model Hidden Training Testing Training Testing

Input Layer RMSE R RMSE R RMSE R RMSE R

M1 I/2 0.1149 0.4569 0.1222 0.5143 0.1259 0.5377 0.1096 0.5084
2I 0.1094 0.5311 0.1251 0.4521 0.1257 0.5398 0.1113 0.4939

2I + 1 0.1093 0.5328 0.1237 0.4754 0.1263 0.5333 0.1110 0.4928

M2 I/2 0.1055 0.5804 0.1256 0.4562 0.1411 0.3363 0.1200 0.3306
2I 0.1050 0.5859 0.1270 0.4398 0.1197 0.6013 0.1087 0.5368

2I + 1 0.1050 0.5855 0.1232 0.4864 0.1232 0.5684 0.1112 0.4850

M3 I/2 0.1042 0.5969 0.1160 0.5640 0.1143 0.6410 0.1050 0.5738
2I 0.1012 0.6276 0.1240 0.4905 0.1105 0.6705 0.1088 0.5543

2I + 1 0.0976 0.6599 0.1238 0.5137 0.1107 0.6686 0.1039 0.5785

M4 I/2 0.1019 0.6199 0.1178 0.5547 0.1199 0.5931 0.1047 0.5692
2I 0.1003 0.6355 0.1205 0.5251 0.1128 0.6525 0.1057 0.5701

2I + 1 0.1023 0.6171 0.1181 0.5632 0.1123 0.6563 0.1089 0.5382

M5 I/2 0.1007 0.6315 0.1200 0.5256 0.1150 0.6352 0.1034 0.5863
2I 0.1005 0.6342 0.1175 0.5409 0.1134 0.6476 0.1086 0.5397

2I + 1 0.1014 0.6251 0.1253 0.5150 0.1127 0.6535 0.1048 0.5736

M6 I/2 0.1072 0.5672 0.1158 0.5690 0.0608 0.9137 0.0714 0.8464
2I 0.1020 0.6186 0.1217 0.5027 0.0678 0.8898 0.0768 0.8479

2I + 1 0.1044 0.5950 0.1145 0.5682 0.0648 0.8999 0.0781 0.8186
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Table 5. The RMSE, MAE and R statistics of LSSVM Model for Selangor and Bernam River.

Selangor River Bernam River

Model Training Testing Training Training

Model Input RMSE R RMSE R RMSE R RMSE R

LSSVM M1 0.1053 0.5792 0.1196 0.5280 0.1244 0.5530 0.1080 0.5263
M2 0.1035 0.0505 0.1216 0.5110 0.1035 0.6033 0.1216 0.511
M3 0.1108 0.6809 0.1055 0.5572 0.1108 0.6809 0.1055 0.5572
M4 0.0997 0.6422 0.1163 0.5738 0.1044 0.6037 0.1031 0.6037
M5 0.0961 0.6747 0.1126 0.6269 0.1021 0.7294 0.1009 0.6118
M6 0.0938 0.6932 0.1119 0.5971 0.0579 0.9319 0.0621 0.8727

GMDH M1 0.1079 0.5491 0.1251 0.4557 0.1235 0.5611 0.1072 0.5376
M2 0.1025 0.6114 0.1199 0.5353 0.1025 0.6114 0.1199 0.5353
M3 0.0955 0.6776 0.1144 0.6052 0.1101 0.6733 0.1034 0.5850
M4 0.0973 0.6621 0.1176 0.5742 0.1142 0.6411 0.1008 0.6085
M5 0.0956 0.6750 0.1164 0.5797 0.1119 0.6598 0.0992 0.6244
M6 0.1065 0.5729 0.1224 0.5023 0.0578 0.9216 0.0853 0.8387

GLSSVM M1 0.0908 0.7107 0.1127 0.5907 0.1180 0.6207 0.1044 0.5701
M2 0.0694 0.8441 0.1187 0.5458 0.0694 0.8441 0.1187 0.5458
M3 0.1006 0.7408 0.1014 0.6137 0.0900 0.7968 0.1046 0.5996
M4 0.0698 0.8432 0.1511 0.5875 0.0783 0.8508 0.1002 0.6402
M5 0.0853 0.7544 0.1123 0.6398 0.1039 0.7164 0.1010 0.6136
M6 0.0920 0.7076 0.1138 0.6008 0.0290 0.9808 0.0642 0.8761
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Table 6. Forecasting performance indices of models for Selangor and Bernam River.

Selangor River Bernam River

Training Testing Training Testing

Model RMSE R RMSE R RMSE R RMSE R

ARIMA 0.0914 0.7055 0.1226 0.5487 0.1049 0.7098 0.1042 0.5842
ANN 0.1044 0.5950 0.1145 0.5682 0.0608 0.9137 0.0714 0.8464
GMDH 0.1101 0.6733 0.1034 0.5850 0.0578 0.9216 0.0853 0.8387
LSSVM 0.0961 0.6747 0.1126 0.6269 0.0579 0.9319 0.0621 0.8727
GLSSVM 0.0853 0.7544 0.1123 0.6398 0.0290 0.9808 0.0642 0.8761
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Fig. 1. Architecture of three layers feed-forward back-propagation ANN.
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Fig. 2. The structure of a SVM.
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Fig. 4. The structure of the GLSSVM model for time series forecasting.
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Figure 7: ACF and PACF of flow series in Selangor river 
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Fig. 5. Location of the Study sites.
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Figure 7: ACF and PACF of flow series in Selangor river 
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Fig. 6. Time Series of Monthly River Flow of Selangor and Bernam River.
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Figure 7: ACF and PACF of flow series in Selangor river 
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Fig. 7. ACF and PACF of flow series in Selangor River.
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Fig. 8. ACF and PACF of flow series in Bernam River.
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Fig. 9. Time Series and Scatter Plot of the Modeled and Actual Monthly Flows for Selangor   
            River (Testing Stage). Fig. 9. Time Series and Scatter Plot of the Modeled and Actual Montly Flows for Selangor

River (Testing Stage).
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Fig. 10. Time Series and Scatter Plot of the Modeled and Actual Monthly Flows for Bernam   
            River (Testing Stage). Fig. 10. Time Series and Scatter Plot of the Modeled and Actual Montly Flows for Bernam

River (Testing Stage).
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